
ER Diagram to Relational Model
LEGEND: (Schema = ER Diagram)
InstitutionID = Inst_ID
Debt-Equity_ratio = D/E Ratio
T_id = Trans_id

Manager (UserId:char(20), Password:char(15), Name:char(15), Phone:Integer, Email:char(30),
PortfoliosManaged:Integer)
Primary Key: UserId	
Alternate Key: (Phone, Name)	
	
Customer (UserId:Integer, Password:char(15), Name:char(15), Phone:Integer, Email:char(30), FICO_Score:Integer,
InstitutionId:Char(30)	
Primary Key: UserId	
Alternate Key: (Phone, Name)	
Foreign Key: InstitutionId REFERENCES CREDITOR	
	
Creditor (InstitutionId:Char(30), Amount_Issued:Float, Institution:char(30))	
Primary Key: InstitutionId	
	
Leverage (CreditId:Integer, InstitutionId:Char(30), UserId:Integer, Interest_Rate:Float, Amount:Integer,
Safety_Margin:Float, Debt-Equity_ratio:Float)	
Primary Key: (CreditId, InstitutionId, UserId)	
Foreign Key: InstitutionId REFERENCES CREDITOR	

UserId REFERENCES CUSTOMER	
	
Portfolio (Pid:Integer, CustomerId:Integer, Date:Date, Balance:Float, Since:Date, ManagerId:Integer)	
Primary Key: (Pid, CustomerId)	
Foreign Key: CustomerId REFERENCES CUSTOMER	

 ManagerId REFERENCES MANAGER	
	
Contains (Pid:Integer, UserId:Integer, Ticker: char(4))	
Primary Key: (Pid, UserId, Ticker)	
Foreign Key: (Pid, CustomerId) REFERENCES PORTFOLIO	

CustomerId REFERENCES CUSTOMER	
Ticker REFERENCES STOCKS	

	
Stocks (Ticker:char(4), Price:Float, Trade_Index:char(15), Industry:char(16), Name:char(16), report_Id:Integer,
EPS:Float, Date:Date, ROI:Float, P/E_Ratio:Float)	
Primary Key: Ticker	
Foreign Key: (Industry, Name) REFERENCES COMPANY	
	
Company (Name:char(16), Industry:char(16), Shares_Outstanding:Integer, Market_Cap:Integer, Ticker:char(4))	
Primary Key: (Name, Industry)	
Foreign Key: Ticker REFERENCES STOCKS	
	
Dividends(T_id:Integer, Div_Yield:Float, Pid:Integer, UserId:Integer, Industry:char, Name:char)	
Primary Key: (Tid, Pid, UserId, Industry, Name) 	
Foreign Key: (Industry, Name) REFERENCES COMPANY	
 Pid REFERENCES PORTFOLIO	
 UserId REFERENCES CUSTOMER	

FUNCTIONAL DEPENDENCIES & NORMALIZATION
Manager:	
UserId -> Password, Name, Phone	
(Phone, Name) -> UserId	
	
Normalization:	

1. UserId -> Password, Name, Phone:
FD is non-trivial and UserId is a PK & SK, so this FD does not violate BCNF	
	

2. (Phone, Name) -> UserId:
FD is non-trivial	
Since (Phone, Name) is an alternate key, it is an SK of the table	
So this FD does not violate BCNF	
	
Since both FDs do not violate BCNF, Manager Table is already in BCNF.	
	
Customer:	
UserId -> Password, Name, Phone, FICO_Score	
(Phone, Name) -> UserId	
	
Normalization:	

1. UserId -> Password, Name, Phone, FICO_Score:
FD is non-trivial, and UserId is a PK & SK, so this FD does not violate BCNF	
	

2. (Phone, Name) -> UserId:
FD is non-trivial	
Since (Phone, Name) is an alternate key, it is an SK of the table	
So this FD does not violate BCNF	
	
Since both FDs do not violate BCNF, Customer Table is already in BCNF.	
	
Creditor:	
InstitutionId -> Institution (eg. JP-PrivateEquity will determine JP-Morgan)	
	
Normalization:	

1. InstitutionId -> Institution:
FD is non-trivial, and InstitutionId is a PK & SK, so this FD does not violate BCNF	
	
Since there is only one FD and it does not violate BCNF, Creditor Table is already in BCNF.	
	
Leverage:	
CreditId -> InstitutionId, UserId, Interest_Rate, Safety_Margin, D-E_Ratio, Amount	
Safety_Margin -> Interest_Rate, D-E_Ratio	
	
Normalization:		

1. CreditId -> InstitutionId, UserId, Interest_Rate, Safety_Margin, D-E_Ratio, Amount:
FD is non-trivial, and CreditId is a PK & SK, so this FD does not violate BCNF	
	

2. Safety_Margin -> Interest_Rate, D-E_Ratio
FD is non-trivial	
Since Safety_Margin is not a SK	
This FD violates BCNF	
	

Decomposition:	
R1= (Safety_Margin, Interest_Rate, D-E_Ratio)	
R2=(CreditId, InstitutionId, UserId, Amount, Safety_Margin)	
	
R1:	
Safety_Margin -> Interest_Rate, D-E_Ratio, and Safety_Margin is the PK & SK	
So R1 is now in BCNF	
	
R2:	
CreditId -> InstitutionId, UserId, Safety_Margin, Amount	
CreditId is PK, and hence SK, so this FD does not violate BCNF	
So R2 is now in BCNF	
	
So Leverage Table is decomposed to:	
R1 = (Safety_Margin, Interest_Rate, D-E_Ratio)	
R2 =(CreditId, InstitutionId, UserId, Amount, Safety_Margin)	
	
Lossless Check:	
Since Interest_Rate and D-E_Ratio are not in R2, 	
CreditId does not directly determine Interest_Rate and D-E_Ratio	
However, CreditId -> Safety_Margin and Safety_Margin -> Interest_Rate, D-E_Ratio	
By transitivity, CreditId -> Interest_Rate, D-E_Ratio	
Since the above FD is preserved and no other FDs are affected,	
The decomposition is a lossless join	

Portfolio:	
Pid -> Date, Balance, Since, ManagerId	
	
Normalization:	
Pid -> Date, Balance, Since, ManagerId:	
FD is non-trivial	
Since the PK is (Pid, CustomerId), Pid by itself is not a SK	
This FD violates BCNF	
	
Decomposition:	
R1 = (Pid, Date, Balance, Since, ManagerId)	
R2 = (Pid, CustomerId)	
	
R1:	
Pid -> Date, Balance, Since, ManagerId	
FD is non-trivial, and Pid is the SK, and hence SK, so R1 is in BCNF	
	
R2:	
Since there are no FD and the PK is all the attributes, which is (Pid, CustomerId)	
R2 is in BCNF	
	
So Portfolio Table is decomposed to:	
R1 = (Pid, Date, Balance, Since, ManagerId)	
R2 = (Pid, CustomerId)	
	
Lossless Check:	
Pid -> Date, Balance, Since, ManagerId is preserved in R1 and there is no other FD	
So the decomposition is a lossless join
	
	

Contains:	
No FD	
	
Stocks:	
Ticker - > Price, Trade_Index, reportId, ROI, P/E_Ratio, Date, EPS, Name, Industry	
reportId -> EPS, Date, ROI, P/E_Ratio	
(Price, EPS) -> P/E_Ratio	
(Name, Industry) -> Trade_Index	
	
Normalization:	
Since Ticker -> reportId and reportId -> EPS, Date, ROI, P/E_Ratio,	
By transitivity, Ticker -> EPS, Date, ROI, P/E_Ratio	
Hence, Ticker -> EPS, Date, ROI, P/E_Ratio is redundant	
The first FD can be reduced to:	
Ticker - > Price, Trade_Index, Report_Id, Name, Industry	
	
Ticker - > Price, Trade_Index, Report_Id, Name, Industry:	
The FD is non-trivial	
Since Ticker is PK, and hence SK, this FD does not violate BCNF	
	
reportId -> EPS, Date, ROI, P/E_Ratio:	
The FD is non-trivial	
Since the PK is Ticker, reportId is not an SK, so this FD violates BCNF	
	
Decomposition:	
R1 = (reportId, EPS, Date, ROI, P/E_Ratio)	
R2 = (Ticker, Price, Trade_Index, Industry, Name, reportId)	
	
R1:	
reportId -> EPS, Date, ROI, P/E_Ratio:	
The FD is not-trivial, and reportId is PK & SK, so R1 is in BCNF	
	
R2:	
Ticker - > Price, Trade_Index, Report_Id, Name, Industry:	
This FD is checked and does not violate BCNF	
	
(Name, Industry) -> Trade_Index:	
The FD is non-trivial	
Since the CK is Ticker, (Name, Industry) is not a SK, so this FD violates BCNF	
	
R3 = (Name, Industry, Trade_Index)	
R4 = (Ticker, Price, Industry, Name, reportId)	
	
R3:	
(Name, Industry) -> Trade_Index:	
The FD is non-trivial, but (Name, Industry) is PK, so this FD does not violate BCNF	
	
R4:	
Ticker - > Price, reportId, Name, Industry:	
This FD is checked and does not violate BCNF	
	
So Stocks Table is decomposed to (BCNF):	
R1 = (reportId, EPS, Date, ROI, P/E_Ratio)	
R3 = (Name, Industry, Trade_Index)	
R4 = (Ticker, Price, Industry, Name, reportId)	

	
Lossless Check:	
Ticker - > Price, Report_Id, Name, Industry is preserved in R4	
	
Ticker cannot directly determine Trade_Index	
However, Since Ticker -> Name, Industry and (Name, Industry) -> Trade_Index	
By transitivity, Ticker -> Trade_Index	
Hence, this FD is not lost	
	
reportId -> EPS, Date, ROI, P/E_Ratio is perserved in R1	
(Name, Industry) -> Trade_Index is preserved in R3	
	
However, (Price, EPS) -> P/E_Ratio is lost during the BCNF decomposition	
Hence, a new relation is needed:	
R5 = (Price, EPS, P/E_Ratio)	
	
So Stocks Table needs to be decomposed to 3NF to be lossless:	
R1 = (reportId, EPS, Date, ROI, P/E_Ratio)	
R3 = (Name, Industry, Trade_Index)	
R4 = (Ticker, Price, Industry, Name, reportId)	
R5 = (Price, EPS, P/E_Ratio)	
	
Company:	
(Industry, Name) - > Market_Cap, Shares_Outstanding	
	
Normalization:	
(Industry, Name) - > Market_Cap, Shares_Outstanding:	
The FD is non-trivial	
Since (Industry, Name) is PK, and hence SK, this FD does not violate BCNF	
	
Dividends:	
T_id -> Dividend_Yield	
	
Normalization:	
The FD is non-trivial	
Since the PK is (T_id, Pid, UserId, Industry, Name), T_id by itself is not an SK,	
This FD violates BCNF	
	
Decomposition:	
R1 = (T_id, Dividend_Yield)	
R2 = (T_id, Pid, UserId, Industry, Name)	
	
R1:	
T_id -> Dividend_Yield:	
The FD is non-trivial, and T_id is PK, and hence SK, so R1 is in BCNF	
	
R2:	
There is no FD in R2, hence R2 is in BCNF	
	
So Dividends Table is decomposed to:	
R1 = (T_id, Dividend_Yield)	
R2 = (T_id, Pid, UserId, Industry, Name)	
	
Lossless Check:	
T_id -> Dividend_Yield is preserved in R1	

So the decomposition is lossless.	

SQL DDL TABLES
Manager
CREATE TABLE Manager
 (UserId: CHAR(20),
 Password: CHAR(15),
 Name: CHAR(15),
 Phone: INTEGER,
 Email: CHAR(30),
 Portfolio_Manager: INTEGER,
 PRIMARY KEY (UserId),
 UNIQUE (Phone, Email));

Customer
CREATE TABLE Customer
 (UserId: INTEGER,
 Password: CHAR(15),
 Name: CHAR(15),
 Phone: INTEGER,
 Email: CHAR(30),
 FICO_Score: INTEGER,
 InstitutionId: CHAR(30),
 PRIMARY KEY (UserId),
 UNIQUE (Phone, Email),
 FOREIGN KEY (InstitutionId) REFERENCES Creditor,

 ON DELETE SET NULL //If a credit is lost, we want to be able to say
 // there is no credit instead of rejecting that credit
 // update/delete and also not set default because
 // that means there is still a credit when there isn't

 ON UPDATE CASCADE);

Creditor
CREATE TABLE Creditor(
 InstitutionId: CHAR(30),
 Amount_Issued: FLOAT,
 Institution: CHAR(30),

PRIMARY KEY (InstitutionId));

Leverage
CREATE TABLE Leverage_R1(
 Safety_Margin: FLOAT,
 Interest_Rate: FLOAT,
 D-E_Ratio: FLOAT,
 PRIMARY KEY (Safety_Margin));

CREATE TABLE Leverage_R2(
CreditId: INTEGER,
InstitutionId: CHAR(30),

UserId: INTEGER,
Amount: INTEGER,
Safety_Margin: FLOAT,
PRIMARY KEY(CreditId, InstitutionId, UserId),
FOREIGN KEY(InstitutionId)

REFERENCES CREDITOR,
 ON DELETE CASCADE
 ON UPDATE CASCADE

FOREIGN KEY(UserId)
REFERENCES CUSTOMER

ON DELETE CASCADE
 ON UPDATE CASCADE);

Stocks
CREATE TABLE Stocks_R1(
 Report_Id: INTEGER,
 EPS: FLOAT,
 Date: DATE,
 ROI: FLOAT,
 P/E_Ratio: FLOAT,
 PRIMARY KEY: (Report_Id));

CREATE TABLE Stocks_R3(
 Name: CHAR(16),
 Industry: CHAR(16)
 Trade_Index: CHAR(15));
 PRIMARY KEY (Name, Industry),
 FOREIGN KEY (Name, Industry)

REFERENCES Company
ON DELETE CASCADE
ON UPDATE CASCADE);

CREATE TABLE Stocks_R4
 (Ticker CHAR(4),
 Price FLOAT,
 Industry CHAR(16),
 Name CHAR(16),
 Report_id INTEGER,
 PRIMARY KEY (Ticker)

FOREIGN KEY (Name, Industry)
REFERENCES Company

ON DELETE NO ACTION
ON UPDATE CASCADE);

CREATE TABLE Stocks_R5
 (Price FLOAT,
 EPS FLOAT,
 P/E_Ratio FLOAT,
 PRIMARY KEY (Price, EPS));

Contains

CREATE TABLE Contains
 (Pid: INTEGER,
 UserId: INTEGER,
 Ticker: CHAR(4),
 PRIMARY KEY (Pid, UserId, Ticker),
 FOREIGN KEY (Pid, CustomerId)

REFERENCES PORTFOLIO,
 ON DELETE
 ON UPDATE

 FOREIGN KEY (CustomerId)
REFERENCES CUSTOMER,

 ON DELETE CASCADE
 ON UPDATE CASCADE

 FOREIGN KEY (Ticker)
REFERENCES STOCKS

ON DELETE NO ACTION
 ON UPDATE CASCADE);

Company
CREATE TABLE Company
 (Name: CHAR(16) NOT NULL,
 Industry: CHAR(16) NOT NULL,
 Shares_Outstanding: INTEGER,
 Market_Cap: INTEGER,
 Ticker: CHAR(4),
 PRIMARY KEY (Name, Industry)
 UNIQUE (Name, Ticker)
 FOREIGN KEY(Ticker)
 REFERENCES STOCKS
 ON DELETE NO ACTION
 // we wouldnt delete a company if the ticker is deleted, reject the deletion
 ON UPDATE CASCADE)

Dividends
CREATE TABLE Dividends_R1(
 T_id: INTEGER,
 Dividend_Yield: FLOAT,
 PRIMARY KEY (T_id));

CREATE TABLE Dividends_R2(
 T_id: INTEGER,
 Pid: INTEGER,
 UserId: INTEGER,
 Industry: CHAR(30),
 Name: CHAT(15),
 PRIMARY KEY(T_id, Pid, UserId, Industry, Name),
 FOREIGN KEY(Pid)
 REFERENCES PORTFOLIO

 ON DELETE CASCADE
 ON UPDATE CASCADE
 FOREIGN KEY(Industry, Name)
 REFERENCES COMPANY
 ON DELETE CASCADE
 ON UPDATE CASCADE
 FOREIGN KEY(UserId)
 REFERENCES CUSTOMER
 ON DELETE CASCADE
 ON UPDATE CASCADE);

Portfolio
CREATE TABLE Portfolio_R1(
 Pid: INTEGER ,
 Date: DATE,
 Balance: FLOAT,
 Since: DATE,
 ManagerId: INTEGER,
 PRIMARY KEY (Pid),
 FOREIGN KEYS (ManagerId),

REFERENCES Manager
ON DELETE SET NULL,
ON UPDATE CASCADE);

CREATE TABLE Portfolio_R2(
 Pid: INTEGER ,
 CustomerId: INTEGER,
 PRIMARY KEY (Pid, CustomerId),

FOREIGN KEY (CustomerId)
REFERENCES Customer

ON DELETE CASCADE,
ON UPDATE CASCADE);

